Forêts

Anne Borgeaud - Gianni Mocellin

Straco

www.straco.ch

Forêts	3
Photosynthèse	4
Piles à combustible	4

Forêts

Une forêt peut être considérée comme une machine fonctionnant en état stationnaire:

Certains flots arrivent dans la forêt:

Un flot d'entropie \dot{S}_{Soleil} provient du soleil. Ce flot d'entropie porte un courant d'énergie $T_{Soleil} \cdot \dot{S}_{Soleil}$ où T_{Soleil} est la température absolue à la surface du soleil (6'000 K).

Soit n une quantité de substance.

Un flot \dot{n}_{CO_2} de gaz carbonique (CO₂) et un flot \dot{n}_{H_2O} d'eau (H₂O).

Le premier est porteur d'un flot d'énergie $\mu_{CO_2} \cdot \dot{n}_{CO_2}$.

Le second est porteur d'un flot d'énergie $\mu_{H_2O} \cdot \dot{n}_{H_2O}$.

Les deux flots sont connectés à un courant d'énergie total $\mu_{CO_2} \cdot \dot{n}_{CO_2} + \mu_{H_2O} \cdot \dot{n}_{H_2O}$.

Les potentiels chimiques μ_i du gaz carbonique et de l'eau sont des quantités qui disent de combien les flots \dot{n}_i de ces substances sont chargés en énergie.

Certains flots sortent de la forêt:

Un flot d'entropie portant un courant d'énergie $T_{Forêt} \cdot \dot{S}_{Forêt}$ où $T_{Forêt}$ est la température à la surface de la forêt (300 K, soit 27 C) et $\dot{S}_{Forêt}$ est la radiation infrarouge de la forêt ainsi que le réchauffement de l'air qui passe dans la forêt.

Un flot n_{Bois} de bois et un flot \dot{n}_{O_2} d'oxygène dont l'énergie totale est $\mu_{Bois} \cdot \dot{n}_{Bois} + \mu_{O_2} \cdot \dot{n}_{O_2}$.

Les potentiels chimiques μ_i du bois et de l'oxygène sont des quantités qui disent de combien les flots \dot{n}_i de ces substances sont chargés en énergie.

Une forêt peut donc être considérée comme une machine thermique:

une machine thermique décharge sur un arbre un flot d'impulsion angulaire, transformé en flot de charges électrique par un générateur, une partie du flot d'entropie qui lui est fourni;

une forêt décharge sur des flots \dot{n}_i une partie de l'énergie qui lui est fournie par l'entropie d'un flot de lumière.

Le fait que les flots \dot{n}_i soient chargés de plus d'énergie lorsqu'il sortent de la forêt que lorsqu'ils pénètrent dans la forêt est exprimé par le fait que lors de la transformation du CO_2 et de l' H_2O en Bois et O_2 les valeurs des potentiels chimiques sont augmentées.

La partie du flot d'énergie qui est transféré dans la forêt depuis le flot d'entropie vers les flots sortants est:

$$\mu_{Bois} \cdot \dot{n}_{Bois} + \mu_{O_2} \cdot \dot{n}_{O_2} - \mu_{CO_2} \cdot \dot{n}_{CO_2} - \mu_{H_2O} \cdot \dot{n}_{H_2O} =$$

$$\left(\mu_{Bois} + m \cdot \mu_{O_2} - m \cdot \mu_{CO_2} - m \cdot \mu_{H_2O}\right) \cdot \dot{n}_{Bois} =$$

$$\mu \cdot \dot{n}_{Bois}$$

En supposant qu'une molécule de bois soit synthétisée à partie de m molécules de CO_2 et m molécules de H_2O et que m molécules de O_2 sont produites par le processus.

Donc l'équation exprime l'énergétique de l'équation de réaction:

$$m \cdot CO_2 + m \cdot H_2O \leftrightarrow Bois + m \cdot O_2$$

dans laquelle Bois représente une molécule de bois.

Le flot d'énergie chimique $\mu \cdot \dot{n}_{Bois}$ est le travail produit par unité de temps par la forêt, c'està-dire sa puissance, tout comme l'expression $U \cdot \dot{Q}$ exprime le travail produit par une machine thermique sous forme d'électricité.

Photosynthèse

La photosynthèse est une réaction photochimique qui produit du glucose et de l'oxygène à partir de gaz carbonique, d'eau et de photons que nous représentons par le symbole γ :

$$6CO_2 + 6H_2O + 48\gamma \rightarrow C_6H_{12}O_6 + 6O_2$$

Cette réaction se produit dans les parties vertes de la forêt qui utilise le dit glucose comme matériau de construction et comme réserve d'énergie.

Piles à combustible

En fait l'énergie chimique $\mu \cdot \dot{n}_{Bois}$ du bois pourrait être transférée directement en énergie électrique $U \cdot \dot{Q}$ sans passer par une phase thermique, ce que font précisément les piles à combustible. Le flot d'entropie $\dot{S}_{Entrée}$ pénétrant dans la pile est égal au flot d'entropie \dot{S}_{Sortie} sortant de la pile de manière telle que si les deux flots s'écoulent à la même température T nous avons:

$$T \cdot \dot{S}_{Entr\acute{e}e} - T \cdot \dot{S}_{Sortie} = 0$$

Pour une pile fonctionnant de manière irréversible, le flot d'énergie électrique $U\cdot\dot{Q}$ sortant de la machine par le mouvement des charges diffère du flot d'énergie chimique $\mu\cdot\dot{n}$ entrant dans la machine avec un quantité de substance de:

$$T \cdot (\dot{S}_{Entrée} - \dot{S}_{Sortie}) = T \cdot \dot{S}_{Créée}$$

où $\dot{S}_{Cr\acute{e}\acute{e}e}$ exprime le flot d'entropie créé par la machine:

$$\Delta \cdot \mu \cdot \dot{n} = \Delta \cdot U \cdot \dot{Q} + T \cdot \dot{S}_{Cr\acute{e}\acute{e}e}$$